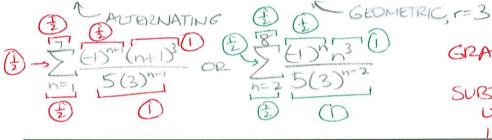

Sketch the curve represented by the parametric equations

$$x = 2|t| - t$$

 $y = t^3 - 2t$ for $-1 \le t \le 2$.

SCORE: _____ / 4 PTS


Indicate the orientation (direction) of the curve.

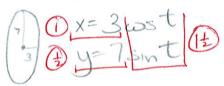
GRADED BY ME

Write $\frac{8}{5} - \frac{27}{15} + \frac{64}{45} - \frac{125}{135} + \frac{216}{405} - \frac{343}{1215} + \frac{512}{3645}$ in sigma notation.

SCORE: ____/4 PTS

GRADE AGAINSTONE VERSION

DULY


SUBTRACT (E) POINT IF INDEX

UNDER ZI DOESN'T MATCH

INDEX INSIDE FORMULA

Find parametric equations for the ellipse with vertices $(0,\pm7)$ and minor axis of length 6.

SCORE: /3 PTS

Prove the formula for the sum of the first n terms of a finite geometric series as shown in lecture.

SCORE: _____ / 5 PTS

$$S_{n} = a_{1} + a_{1}\Gamma + a_{1}\Gamma^{2} + \dots + a_{r}\Gamma^{r}^{3} + a_{r}\Gamma^{r}^{2} + a_{r}\Gamma^{r}^{2$$

The parametric equations $x = 2 - t^2$ and $x = e^{-t} + 2$ both correspond to the rectangular equation $y = x - 2$.	SCORE:/3 PTS
Explain how the parametric curves differ from each other. Be as specific as possible. As t 60ES FROM - 00 TO 00, y=-t^2 60ES FROM-00 TO 0 TO -00 AND y=e^-t 60ES FROM 12.00	ME 1 D TO O
(2,5)	
Find the sum of the infinite series $162-108+72-48+32-\cdots$. GEOMETRIC $r = \frac{108}{162} = -\frac{2}{3}$	SCORE:/2 PTS
Find parametric equations for the circle with center $(5, -4)$ and radius 6 .	SCORE:/2 PTS
Y=-4+6smt 0	
To prepare for his daughter's college tuition, Chris opened a new savings account. The first month, he added \$329 into the account. Every month after that, he added \$17 more than he had added	SCORE:/ 4 PTS the previous month.
[a] After 11 years, how much had Chris added to the account altogether? ARITHMETIC, $d = 17$ YEARS = 132 MONTHS	
$S_{132} = \pm (132)(2(329) + (132-1)(17)) = $190,410$	
[b] How much did Chris add to the account in month 93?	
$\alpha_{93} = 329 + (93 - 1)(17) = $1,893$	
Eliminate the parameter and write the rectangular equation for the curve represented by the parametric	SCORE:/ 3 PTS
equations $x = e^{2t}$ $y = 12t^2$. Write your final answer in the form y as a simplified function of x.	
Inx=2t y=12(\frac{1}{2}\lnx)^2 (1)	
t== 12 (4 Unx)2)	
$y = 2t$ $y = 12(\pm \ln x)^{2}$ $y = 12(\pm \ln x)^{2}$ $y = 3(\ln x)^{2}$ $y = 3(\ln x)^{2}$	